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Introduction

We shall show an equivalence between two conditions on probabilistic physical
theories which are usually taken to be quite different in nature:

No-Signalling, which is usually taken to reflect constraints imposed by
Relativity.

Free choice of measurements, which seems to be a necessary assumption
for any No-Go theorem.

Our equivalence is mediated by negative probabilities, and is based on a striking
result characterising the correlations which can be realised by local hidden-variable
theories if we allow signed measures (negative probabilities) on the hidden
variables.

Negative probabilities have been considered by Wigner, Dirac, Feynman et al.
without ever acquiring a clear status.

We shall also sketch an ‘operational interpretation’ of negative probabilities.
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No-Signalling

The usual story:
When Alice and Bob perform measurements in spacelike-separated locations, the
marginal probabilities for Alice’s observations of outcomes for her measurements
are independent of Bob’s choice of measurement setting.

This can be taken to reflect the inability, under relativistic constraints, for
information about Bob’s settings to reach Alice’s site in time to influence her
outcomes.

Reasons to be doubtful:

Probabilities refer to ensembles. The entire ensembles must be space-like
separated from each other; and they may be unbounded in size . . .

No-Signalling can be proved for ordinary QM with classical background.
Indeed, it is a formal property of families of commuting observables, without
any reference to causal background.
See e.g. the form of No-Signalling shown by S. Abramsky and A.
Brandenburger, The sheaf-theoretic structure of non-locality and
contextuality. New Journal of Physics, 13(2011):113036, 2011.

So the underlying structural reasons why it holds seem to be different.
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Free Choice of Measurements

This is a condition on hidden-variable theories, that the probability distribution on
the hidden variable is independent of the probabilities on measurement settings
induced by a given value of the hidden variable.

Otherwise, if for example the hidden variable actually determines which
measurement settings can be chosen, then the hidden-variable theory becomes a
self-fulfilling prophecy, and any empirical behaviour can trivially be reproduced.

Without this condition, or something like it, it seems impossible to prove any
substantive no-go theorem.

Alternative name: λ-independence.

Apparently of a very different character to No-Signalling!
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The Setting

The Abramsky-Brandenburger sheaf-theoretic setting, providing a common
generalisation of non-locality theory (Bell scenarios) and contextuality theory
(Kochen-Specker configurations etc.)

Measurement cover: a pair (X ,U), where X is a finite set, and U is a family of
subsets of X .

Fix a set of outcomes O. Ω := OX is a set of canonical hidden variables.

D±(S) is the set of signed probability measures on a (finite) set S , i.e. maps
d : S → R such that ∑

x∈S

d(x) = 1.

D+(S) is the subset of D±(S) of bona fide probability measures, i.e. valued in the
non-negative reals.

Given (X ,U) and O, we define a set of atomic events E :

E := {(U, s) | U ∈ U ∧ s ∈ OU}.
Thus (U, s) is the event that the measurements in U were performed, and the
outcome s(x) was observed for each x ∈ U.
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Empirical Models

An empirical model over ((X ,U),O) is a probability distribution e ∈ D+(E ) such
that, for each U ∈ U,

e(U) :=
∑
s∈OU

e(U, s) > 0.

For each U ∈ U, e determines a probability distribution eU ∈ D+(OU) as the
conditional probability eU(s) := e((U, s)|U).

Empirical models generalise the standard probability tables familiar from
non-locality theory.

E.g. take X = A t B to be Alice’s measurements plus Bob’s measurements, and

U := {{a, b} | a ∈ A, b ∈ B}.

Also generalises K-S configurations: given a family of observables X , take U to
the the family of commuting subsets.
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non-locality theory.

E.g. take X = A t B to be Alice’s measurements plus Bob’s measurements, and

U := {{a, b} | a ∈ A, b ∈ B}.

Also generalises K-S configurations: given a family of observables X , take U to
the the family of commuting subsets.
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Hidden-Variable Models

A signed canonical hidden-variable model (schv model) is a signed measure
m ∈ D±(Ω× U).

A probabilistic canonical hidden-variable model (pchv model) is an schv model
p such that p ∈ D+(Ω× U).

Given (U, s) ∈ E , we define

Ω(U, s) := {ω ∈ Ω | ω|U = s}.

This is the set of canonical hidden variables which are consistent with the atomic
event (U, s).

Note that, for each U ∈ U, the sets Ω(U, s) as s ranges over OU partition Ω.

An schv model m determines a signed measure m̂ ∈ D±(E ) by marginalization:

m̂(U, s) :=
∑

ω∈Ω(U,s)

m(ω,U).

We say that an schv model m realizes an empirical model e if m̂ = e.
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The need for the FCM assumption

Proposition

For every empirical model e, there is a pchv model p which realizes e.

So without additional constraints realization by deterministic hidden variables is
trivially achieved.

The key condition is free choice of measurements (FCM, aka Lambda
Independence):

The distribution on the hidden variables should be statistically independent of the
choice of measurement context.

Formally, an schv model m satisfies FCM if it factors as a product: m = mΩmU,
where mΩ ∈ D±(Ω) and mU ∈ D±(U) are the marginals of m.

Proposition

An schv model m satisfies FCM iff for all ω ∈ Ω, U,U ′ ∈ U,

m(ω|U) = m(ω|U ′).
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Bell in Context

We say that an empirical model which is realized by a pchv model satisfying FCM
admits local hidden variables.

This definition is equivalent to the standard definitions, which allow a broader
class of hidden variable models.

Theorem (Bell’s Theorem)

There are empirical models which can be realized in quantum mechanics which do
not admit local hidden variables.
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No-Signalling

An empirical model e satisfies No-Signalling if for all U,U ′ ∈ U, s ∈ OU∩U′
:

eU(s) = eU′(s).

This says that the distributions conditioned on different measurement choices
have common marginals.

Thus the choice of additional measurements U \V outside a compatible set V has
no effect on the observed statistics for the measurement outcomes in V .

This is easily seen to be equivalent to the standard formulation of No-Signalling in
Bell-type scenarios, and to be satisfied generally in quantum mechanics
(Abramsky-Brandenburger 2011).

Proposition

Let m be an schv model satisfying FCM which realizes an empirical model e = m̂.
Then e satisfies No-Signalling.

Note however that the converse does not hold, even for pchv models.

Samson Abramsky, Adam Brandenburger and Andrei Savochkin (Department of Computer ScienceThe University of Oxford)No-Signalling Is Equivalent To Free Choice Of Measurements 10 / 19



No-Signalling
An empirical model e satisfies No-Signalling if for all U,U ′ ∈ U, s ∈ OU∩U′

:

eU(s) = eU′(s).

This says that the distributions conditioned on different measurement choices
have common marginals.

Thus the choice of additional measurements U \V outside a compatible set V has
no effect on the observed statistics for the measurement outcomes in V .

This is easily seen to be equivalent to the standard formulation of No-Signalling in
Bell-type scenarios, and to be satisfied generally in quantum mechanics
(Abramsky-Brandenburger 2011).

Proposition

Let m be an schv model satisfying FCM which realizes an empirical model e = m̂.
Then e satisfies No-Signalling.

Note however that the converse does not hold, even for pchv models.

Samson Abramsky, Adam Brandenburger and Andrei Savochkin (Department of Computer ScienceThe University of Oxford)No-Signalling Is Equivalent To Free Choice Of Measurements 10 / 19



No-Signalling
An empirical model e satisfies No-Signalling if for all U,U ′ ∈ U, s ∈ OU∩U′

:

eU(s) = eU′(s).

This says that the distributions conditioned on different measurement choices
have common marginals.

Thus the choice of additional measurements U \V outside a compatible set V has
no effect on the observed statistics for the measurement outcomes in V .

This is easily seen to be equivalent to the standard formulation of No-Signalling in
Bell-type scenarios, and to be satisfied generally in quantum mechanics
(Abramsky-Brandenburger 2011).

Proposition

Let m be an schv model satisfying FCM which realizes an empirical model e = m̂.
Then e satisfies No-Signalling.

Note however that the converse does not hold, even for pchv models.

Samson Abramsky, Adam Brandenburger and Andrei Savochkin (Department of Computer ScienceThe University of Oxford)No-Signalling Is Equivalent To Free Choice Of Measurements 10 / 19



No-Signalling
An empirical model e satisfies No-Signalling if for all U,U ′ ∈ U, s ∈ OU∩U′

:

eU(s) = eU′(s).

This says that the distributions conditioned on different measurement choices
have common marginals.

Thus the choice of additional measurements U \V outside a compatible set V has
no effect on the observed statistics for the measurement outcomes in V .

This is easily seen to be equivalent to the standard formulation of No-Signalling in
Bell-type scenarios, and to be satisfied generally in quantum mechanics
(Abramsky-Brandenburger 2011).

Proposition

Let m be an schv model satisfying FCM which realizes an empirical model e = m̂.
Then e satisfies No-Signalling.

Note however that the converse does not hold, even for pchv models.

Samson Abramsky, Adam Brandenburger and Andrei Savochkin (Department of Computer ScienceThe University of Oxford)No-Signalling Is Equivalent To Free Choice Of Measurements 10 / 19



No-Signalling
An empirical model e satisfies No-Signalling if for all U,U ′ ∈ U, s ∈ OU∩U′

:

eU(s) = eU′(s).

This says that the distributions conditioned on different measurement choices
have common marginals.

Thus the choice of additional measurements U \V outside a compatible set V has
no effect on the observed statistics for the measurement outcomes in V .

This is easily seen to be equivalent to the standard formulation of No-Signalling in
Bell-type scenarios, and to be satisfied generally in quantum mechanics
(Abramsky-Brandenburger 2011).

Proposition

Let m be an schv model satisfying FCM which realizes an empirical model e = m̂.
Then e satisfies No-Signalling.

Note however that the converse does not hold, even for pchv models.

Samson Abramsky, Adam Brandenburger and Andrei Savochkin (Department of Computer ScienceThe University of Oxford)No-Signalling Is Equivalent To Free Choice Of Measurements 10 / 19



No-Signalling
An empirical model e satisfies No-Signalling if for all U,U ′ ∈ U, s ∈ OU∩U′

:

eU(s) = eU′(s).

This says that the distributions conditioned on different measurement choices
have common marginals.

Thus the choice of additional measurements U \V outside a compatible set V has
no effect on the observed statistics for the measurement outcomes in V .

This is easily seen to be equivalent to the standard formulation of No-Signalling in
Bell-type scenarios, and to be satisfied generally in quantum mechanics
(Abramsky-Brandenburger 2011).

Proposition

Let m be an schv model satisfying FCM which realizes an empirical model e = m̂.
Then e satisfies No-Signalling.

Note however that the converse does not hold, even for pchv models.

Samson Abramsky, Adam Brandenburger and Andrei Savochkin (Department of Computer ScienceThe University of Oxford)No-Signalling Is Equivalent To Free Choice Of Measurements 10 / 19



No-Signalling
An empirical model e satisfies No-Signalling if for all U,U ′ ∈ U, s ∈ OU∩U′

:

eU(s) = eU′(s).

This says that the distributions conditioned on different measurement choices
have common marginals.

Thus the choice of additional measurements U \V outside a compatible set V has
no effect on the observed statistics for the measurement outcomes in V .

This is easily seen to be equivalent to the standard formulation of No-Signalling in
Bell-type scenarios, and to be satisfied generally in quantum mechanics
(Abramsky-Brandenburger 2011).

Proposition

Let m be an schv model satisfying FCM which realizes an empirical model e = m̂.
Then e satisfies No-Signalling.

Note however that the converse does not hold, even for pchv models.

Samson Abramsky, Adam Brandenburger and Andrei Savochkin (Department of Computer ScienceThe University of Oxford)No-Signalling Is Equivalent To Free Choice Of Measurements 10 / 19



The Main Result
We now ask:

Which empirical models can be realised by local hidden variables, if we
allow signed measures (negative probabilities) on the hidden
variables?

It is important to note that the empirical models are bona fide probabilistic
models. The negative probabilities are used only on the hidden variables, and
must cancel out to yield non-negative probabilities on the observed quantities.

Negative probabilities have been considered by Wigner, Dirac, Feynman, . . .

Feynman:

The only difference between a probabilistic classical world and the
equations of the quantum world is that somehow or other it appears as if
the probabilities would have to go negative . . .

Theorem

Empirical models have local hidden-variable realizations with negative probabilities
if and only if they satisfy no-signalling.
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Linear Span Theorem

The fact that all no-signalling empirical models admit local hidden variables with
signed measures is a consequence of the following:

Theorem
The linear subspace generated by the local models over an arbitrary measurement
cover U coincides with that generated by the no-signalling models. Their common
dimension is

D :=
∑
U∈Σ

(l − 1)|U|

where l = |O| and Σ is the abstract simplicial complex generated by U.

Since the local models are included in the no-signalling models, this is proved by
showing that every compatible model is determined by linear equations in D
variables; while there are D linearly independent local models.
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Example: PR Boxes have global sections over R

The ‘Popescu-Rohrlich box’:

(0, 0) (1, 0) (0, 1) (1, 1)

(a, b) 1/2 0 0 1/2

(a′, b) 1/2 0 0 1/2

(a, b′) 1/2 0 0 1/2

(a′, b′) 0 1/2 1/2 0

The PR boxes exhibit super-quantum correlations, and cannot be realized in
quantum mechanics.

Example solution:

[1/2, 0, 0, 0,−1/2, 0, 1/2, 0,−1/2, 1/2, 0, 0, 1/2, 0, 0, 0].

This vector can be taken as giving a local hidden-variable realization of the
PR box using negative probabilities. Similar explicit realizations can be given
for the other PR boxes.
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The Equivalence

The equivalence between No-Signalling and FCM is stated precisely in the
following results:

Proposition

Let m be an schv model satisfying FCM which realizes an empirical model e = m̂.
Then e satisfies No-Signalling.

As a consequence of our main theorem:

Proposition

Every empirical model e satisfying No-Signalling is realized by some schv model
satisfying FCM.

Hence we obtain the equivalence:

Theorem
An empirical model is No-Signalling if and only if it is realized by an schv model
satisfying FCM.

Samson Abramsky, Adam Brandenburger and Andrei Savochkin (Department of Computer ScienceThe University of Oxford)No-Signalling Is Equivalent To Free Choice Of Measurements 14 / 19



The Equivalence
The equivalence between No-Signalling and FCM is stated precisely in the
following results:

Proposition

Let m be an schv model satisfying FCM which realizes an empirical model e = m̂.
Then e satisfies No-Signalling.

As a consequence of our main theorem:

Proposition

Every empirical model e satisfying No-Signalling is realized by some schv model
satisfying FCM.

Hence we obtain the equivalence:

Theorem
An empirical model is No-Signalling if and only if it is realized by an schv model
satisfying FCM.

Samson Abramsky, Adam Brandenburger and Andrei Savochkin (Department of Computer ScienceThe University of Oxford)No-Signalling Is Equivalent To Free Choice Of Measurements 14 / 19



The Equivalence
The equivalence between No-Signalling and FCM is stated precisely in the
following results:

Proposition

Let m be an schv model satisfying FCM which realizes an empirical model e = m̂.
Then e satisfies No-Signalling.

As a consequence of our main theorem:

Proposition

Every empirical model e satisfying No-Signalling is realized by some schv model
satisfying FCM.

Hence we obtain the equivalence:

Theorem
An empirical model is No-Signalling if and only if it is realized by an schv model
satisfying FCM.

Samson Abramsky, Adam Brandenburger and Andrei Savochkin (Department of Computer ScienceThe University of Oxford)No-Signalling Is Equivalent To Free Choice Of Measurements 14 / 19



The Equivalence
The equivalence between No-Signalling and FCM is stated precisely in the
following results:

Proposition

Let m be an schv model satisfying FCM which realizes an empirical model e = m̂.
Then e satisfies No-Signalling.

As a consequence of our main theorem:

Proposition

Every empirical model e satisfying No-Signalling is realized by some schv model
satisfying FCM.

Hence we obtain the equivalence:

Theorem
An empirical model is No-Signalling if and only if it is realized by an schv model
satisfying FCM.

Samson Abramsky, Adam Brandenburger and Andrei Savochkin (Department of Computer ScienceThe University of Oxford)No-Signalling Is Equivalent To Free Choice Of Measurements 14 / 19



The Equivalence
The equivalence between No-Signalling and FCM is stated precisely in the
following results:

Proposition

Let m be an schv model satisfying FCM which realizes an empirical model e = m̂.
Then e satisfies No-Signalling.

As a consequence of our main theorem:

Proposition

Every empirical model e satisfying No-Signalling is realized by some schv model
satisfying FCM.

Hence we obtain the equivalence:

Theorem
An empirical model is No-Signalling if and only if it is realized by an schv model
satisfying FCM.

Samson Abramsky, Adam Brandenburger and Andrei Savochkin (Department of Computer ScienceThe University of Oxford)No-Signalling Is Equivalent To Free Choice Of Measurements 14 / 19



But what are these negative probabilities?

We shall sketch an ‘operational interpretation’ of negative probabilities, and how
this yields a way of realising arbitrary no-signalling devices.

Not ‘physical’. Perhaps best thought of as a simulation.

The basic idea: ‘push the minus signs inwards’. We take signed events.

The idea (in a frequentist setting) is that events of opposite sign cancel.

•+, •− −→

We also have ‘creation’ as well as ‘annihilation’, since adding opposite events will
not affect the signed relative frequencies:

−→ •+, •−

The signed relative frequency of an event • in an ensemble of size N will be

n+ − n−

N

where •+ occurs n+ times and •− occurs n− times in the ensemble.
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More formally

There is a map
θX : D±(X ) −→ D+(X + X )

which puts positive weight d(x) ≥ 0 on x on positive copy (first summand) and
(absolute value of) negative weight on second copy.

There is a map
ηX : D+(X + X ) −→ D±(X )

which sets ηX (d)(x) := d(x+)− d(x−).

Caveats:

Need to renormalise θX (d).

Naturality: need to work with reflection to normalised subcategory in which
positive and negative weights have been cancelled.

This is a (pale) reflection of the Hahn-Jordan decomposition.
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The Mermin instruction set picture

Alice Bob

a, a′, . . . b, b′, . . .

0110

...

aa′bb′

Source

0110 0110

Target

a 7→ 0 b 7→ 1
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Signed version of the Mermin instruction set picture

Alice Bob

a, a′, . . . b, b′, . . .

0110

...

aa′bb′

Source

±

0110 0110

Target

a 7→ 0 b 7→ 1

±
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Final Remarks

So we have an ‘operational semantics’ for simulating arbitrary no-signalling
devices.

Rather than taking e.g. PR boxes as ‘black boxes’ we have some story about how
they might work inside.

Uses?

Does ‘cancellation’ imply or otherwise relate to retrocausality?
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